Dust Ion Acoustic Solitary Wave in Weakly Relativistic Dusty Plasma with Non-thermal Ions

Archana Patidara) and Prerana Sharmab)

1Physics Department, Ujjain Engineering College, Ujjain, M.P.-456010, India
a)Corresponding author: archanapatidar2@gmail.com
b)preranaitd@rediffmail.com

Abstract. Characteristics of the nonlinear dust ion acoustic solitary waves in dusty plasma with weak relativistic effect are examined. We consider the weakly relativistic effect of electron species, the ion species with nonthermal distribution and charged dust grains. The nonlinear Korteweg-de Vries equation is derived from the governing normalized basic set of equations. The numerical calculations show the influence of non-thermal ion population on the width and amplitude of dust ion acoustic solitary waves. Space plasma and interstellar medium are the areas where the results of the work can be applied.

INTRODUCTION

The suspension of dust particles in normalelectron-ion plasma has introduced the more complexity in the plasma system and so it named as “dusty plasma”. Its presence is abundant in interplanetary space, circumsolar, interstellar clouds, planetary nebulas, cometary tails etc. [1-2]. The extensive work has been done to analyze the linear and nonlinear wave propagation in dusty plasma. Singh and Rao [3] have studied the propagation of linear and nonlinear dust acoustic waves in dusty plasma. Dorranian and Sabetkar [4] have carried out the investigation in dusty plasma and studied the dust acoustic solitary waves considering two non-thermal ion species. The investigation on nonlinear ion acoustic solitary wave in magnetized electron positron ion plasmas has been carried out by Mahmood et al. [5]. Recently, the dust ion acoustic solitary structures in collisionless dusty plasma considering isothermal positrons have been studied by Paul et al. [6] using Sagdeev potential technique.

However, all the above mentioned works have been constrained in the nonrelativistic plasma. But in some situations such as in the Van Allen radiation belts, in interstellar medium, space plasma, in earth magnetosphere, where the velocity of electron species becomes approximately similar to the speed of light, the consideration of relativistic behavior in plasma shows significant role in modifying the nonlinear structures. In this direction, Singh and Dahiya [7] have obtained the Korteweg-de Vries (KdV) equation to study the influence of ion temperature and density of plasma on the behavior of ion acoustic solitons in relativistic plasma. The behavior of spherical and cylindrical dust ion acoustic solitary waves in dusty plasma with the presence of relativistic ions has been studied by Liu et al. [8]. The dust ion acoustic solitary waves in multicomponent plasma considering the weak relativistic effects of electron and ion have studied by Kalita and Choudhary [9]. Moreover, several plasma workers dealt with the dusty plasma incorporating the nonthermal ion population to study the nonlinear waves and structures. Zhang and Wang [10] have reported the influence of two temperature nonthermal ions on dust acoustic solitary waves. The KdV- Burgers equation is obtained by Shahmansouri and Mamun [11] to establish the effect of nonthermal ion and electrons on the dust acoustic shock waves in magnetized viscous dusty plasma. Thus, the non-thermal ion distribution is very important to study the non-linear waves and structures in dusty plasma. In the present investigation, following the work of Kalita and Choudhary [9], weak relativistic effect of electrons and nonthermal distribution of ions are considered to observe the role of nonthermal ions on dust ion acoustic solitary waves in dusty plasma accounting weak relativistic electron species.
BASIC EQUATIONS

We have considered homogeneous unmagnetized dusty plasma to study the effect of non-thermal ion population on solitary waves in presence of weakly relativistic electrons. The number density n_i of non-thermally distributed ions can be written as

$$n_i = [1 + \beta \psi \delta + \beta \psi^2 \delta^2] \exp(-\psi \delta) \quad (1)$$

The symbol $\beta = 4\alpha/(1 + 3\alpha)$ where α represents the non-thermal ion population and $\delta = T_{in}/T_{pe}$. The electrostatic potential, ion temperature, electric charge and Boltzmann constant are given by ψ, T_i, e and k_B respectively.

Further the electrons are assumed weakly relativistic as its mass (m_e) increased with its velocity u_e. Hence the continuity and momentum equations for electron are

$$\frac{\partial}{\partial t}(\gamma_i n_i) + \frac{\partial}{\partial z}(\gamma_i n_i u_i) = 0 \quad (2), \quad \left(\frac{\partial}{\partial t} + u_i \frac{\partial}{\partial z} \right) (\gamma_i n_i) - \frac{m_i}{m_e} \frac{\partial \psi}{\partial z} + \frac{m_i}{\gamma_i m_i n_i} \frac{\partial \psi}{\partial z} (\gamma_i n_i) = 0 \quad (3)$$

where $\gamma_i = (1 - u_i^2/c^2)^{-1/2}$, n_i, T_i and $p_i(n_i k_B T_i)$ represent relativistic factor, number density, temperature and pressure of electron respectively and c represents speed of light.

The dust is assumed nonrelativistic and its dynamics can be represented as

$$\frac{\partial n_d}{\partial t} + \frac{\partial}{\partial z}(n_d u_d) = 0 \quad (4), \quad \left(\frac{\partial}{\partial t} + u_d \frac{\partial}{\partial z} \right) (n_d u_d) - Z_e \frac{\partial \psi}{\partial z} = 0 \quad (5)$$

The mass, velocity, number density, charge and temperature of negatively charged dust grains is symbolized by m_d, u_d, n_d, q_d and T_d respectively.

The Poisson’s equation is expressed as

$$\frac{\partial^2 \psi}{\partial z^2} = -\left(n_i - \gamma_i n_i - Z_e n_d \right) \quad (6)$$

Equations(1)-(6) are normalized using the following dimensionless quantities as

$$n_{d,i,e,i} = \frac{n_d}{n_i}, \frac{\partial}{\partial z} = \frac{\partial}{\partial z} \left(\frac{k_BT_e}{4\pi e^2 n_0} \right)^{1/2}, \psi = \frac{e\psi}{k_BT_e}, \frac{u_d}{u_i} = \left(\frac{m_i}{m_d} \right)^{1/2}, \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \left(\frac{m_d}{4\pi e^2 n_0} \right)^{1/2}$$

DUST ION ACOUSTIC SOLITARY WAVES

In order to study the impact of non-thermal ion population on an ion acoustic solitary wave in weakly relativistic dusty plasma the reductive perturbation method has been used. The stretched coordinates are introduced as $\xi = \psi^{1/2}(z - \lambda t)$ and $\tau = \psi^{3/2} \xi$ where ψ and λ represents the nonlinearity measurable parameter and phase velocity respectively.

The plasma variables n, u and ψ are expanded in the power series of ψ in the following form as

$$\begin{align*}
\psi &= n_o + \varepsilon \psi_1 + \varepsilon^2 \psi_2 + \ldots \\
u_e &= n_{o1} + \varepsilon \psi_{11} + \varepsilon^2 \psi_{12} + \ldots \\
u_i &= n_{o2} + \varepsilon \psi_{21} + \varepsilon^2 \psi_{22} + \ldots \\
u_d &= n_{o3} + \varepsilon \psi_{31} + \varepsilon^2 \psi_{32} + \ldots \\
\end{align*}$$

(7)

Now, using the stretched coordinates and applying the above expansion (7) in equations (1)-(6) and collecting the lowest order terms of ε from nonthermal distribution of ion, continuity and momentum equations of electron and dust as well as from Poisson equation of electrostatic potential, following results are obtained
represents the constant speed of solitary wave and boundary conditions
in which
from above equations (14)
Now substituting the require value of
Similarly collecting the next higher order terms (~ε^2) from Poisson equation of electrostatic potential
Now substituting the require value of n_{e2}, u_{e2} and n_{d2} from above equations (14–18) in equation (19), we obtained the KdV form of equation
where
The stationary wave solution can be find by transforming space and time coordinates using $\eta = \xi - U_{s}\tau$, in which U_{s} represents the constant speed of solitary wave and boundary conditions $\psi_{1} = 0$, $\partial\psi_{1}/\partial\eta = 0$, $\partial^{2}\psi_{1}/\partial\eta^{2} = 0$ for
η → ∞. Thus, the obtained solution of Eq. (20) can be given as $\psi_{2} = \psi_{0} \sec^{2}(\eta/\Delta)$, where $\psi_{0} = 3U_{a}/A$ and $\Delta = (4B/U_{a})^{0.5}$.

In order to see the effect of nonthermal ion numerically on the solitary waves, Fig. 1 is plotted. The variation of electrostatic potential of dust ion acoustic solitary waves for three values of nonthermal ion is shown in Fig. 1. The constant values of other parameters are $u_{e0} = 10$, $z_{d} = 10$, $c = 500$, $M = 0.01$, and $\delta = 0.1$. It is seen that the soliton amplitude and width increases with nonthermal ion for weakly relativistic dusty plasma.

FIGURE 1. Variation of electrostatic potential of solitary waves for three different values of nonthermal ion

CONCLUSIONS

In the considered model, the effect of non-thermal ion on dust acoustic solitary waves has been studied. It can be concluded that dust ion acoustic solitary waves significantly affected by the nonthermal ion population in dusty plasma with weakly relativistic electrons.

ACKNOWLEDGEMENT

We acknowledge our gratefulness to MPCST Bhopal (F. No. A/RD/ RP-2/2015-16/243) and SERB-DST (F. No. SB/FTP/PS–075/2014) for the monetary support

REFERENCES